APPLICATION OF GEOMETRIC GRAPH DISTANCES IN MACHINE LEARNING CLASSIFICATION

William Rodman

Oral Defense
Newcomb-Tulane Collage Honors Thesis
April $18^{\text {th }}, 2024$

ORAL DEFENSE AGENDA

50-minute presentation:
I. Academic background and previous research.
2. Research topics and hypothesis.
3. Research conducted.
4. Results and hypothesis test.
5. Continuing work.

30-minute deliberation:
I. Questions and comments.
2. Advisors satisfactory/unsatisfactory decision.

ACADEMIC BACKGROUND AND PREVIOUS RESEARCH

2020-2024

B.S. MATHEMATICS AND

 COMPUTER SCIENCE- Statistical Coursework: Linear Algebra, Probability Theory, Statistics, Stochastics and Linear Models.
- Machine Learning Coursework: Machine Learning and Data Science.

202I-2023
2023-2024

COMPUTER SCIENCE RESEARCH ASSISTANCE

- Begun working on geometric distances in May of 2021 under Dr. Carola Wenk.

HONORS THESIS THAT
COMBINES GEOMETRIC
DISTANCE ALGORITHMS
AND STATISTICAL MACHINE LEARNING

- Contributed to two geometric distance Python Packages on GitHub.

TOPICS WEAK FRÉCHET AND TRAVERSAL DISTANCE

Research Topics

WEAK FRÉCHET DISTANCE

- Polygonal curves.
- Distance measurements between two polynomial curves.
- Subproblem of the traversal distance.
- Free-space diagram visualization.

TRAVERSAL DISTANCE

- Geometric graphs.
- Distance measurements distance between two geometric graphs.
- Symmetric case of the traversal distance.
- Visualizing traversal distance free space area.

Comparable Distance

GRAPH EDIT DISTANCE

- Edit distances between two geometric graphs.

TOPICS CLASSIFICATION PROBLEMS AND K-NN

- Datasets of labeled geometric graphs:
- English letter dataset.
- Plant leaf dataset.
- Distance based algorithms in machine learning:
- k-Nearest Neighbors algorithm.
- Evaluating multiclassification problems:
- Macro average precision.
- Macro average recall.

Supervised Machine Learning

Classification Models

k-Nearest Neighbors
Algorithm

HYPOTHESIS

THE K-NEAREST NEIGHBORS MODEL, WHEN APPLYING TRAVERSAL DISTANCE AS ITS DISTANCE METRIC, IS:
I. PRECISE IN CLASSIFYING GEOMETRIC GRAPHS. 2. COMPUTATIONALLY EFFICIENT.

RESEARCH GEOMETRIC GRAPHS

DEFINITION

- G is a pair $G=(V, E)$
- V is the set of vertices (with vertex v in V) corresponding to a pair of two-dimensional coordinates (x, y).
$V=\{1,2, \ldots, n\} \quad$ where $\quad n \in \mathbb{N}$ such that $v_{i} \mapsto\left(x_{i}, y_{i}\right)$
- E is the set of edges (with edge e in E) that defines a line segment bound by two vertices.
$E=\left\{e_{i} \mid\left(v_{i}, v_{j}\right) \in V \times V\right\} \quad$ such that $e_{i}=\left(v_{i}, v_{j}\right)$

Note: Edges have a geometric property.

Geometric graph (G) and polygonal curve (C).

Strictly geometric graph (G).

RESEARCH WEAK FRÉCHET DISTANCE

DEFINITION

- For two curves, CI and C 2 , this is the minimum parameter (ϵ) that allows an agent to increment by segment through their parameter space.

$$
\delta_{F}\left(C_{1}, C_{2}\right):=\inf _{\alpha \rightarrow[0,1], \beta \rightarrow[0,1]} \max _{t \in[0,1]}\left\|C_{1}(\alpha(t))-C_{2}(\beta(t))\right\|
$$

RESEARCH
 FREE-SPACE DIAGRAM

- Represents the parameter space of all possible e and v combinations for Cl and C 2 , where ϵ is an arbitrary threshold within the parameter space.
- The weak Fréchet Distance algorithm stores free-space as a dictionary of discrete (start, end) cell boundaries.

Two Polygonal Curves

$$
\delta_{F}\left(C_{1}, C_{2}\right)>2
$$

$$
\delta_{F}\left(C_{1}, C_{2}\right) \leq 4
$$

$4 \times 3=12$ total free-space cells. 4 of 12 free-space cells are empty.

Zero free-space cells are empty. Free-space covers both curves entirely.

RESEARCH TRAVERSAL DISTANCE

DEFINITION

- For two geometric graphs GI $=(\mathrm{VI}, \mathrm{EI})$ and $\mathrm{G} 2=(\mathrm{V} 2$, E2). The traversal distance from G 2 to GI is:
$\delta_{T}\left(G_{1}, G_{2}\right)=\inf _{f, g} \max _{t \in[0,1]}\|f(t)-g(t)\|$

Continuous parametrization entirely over G2.

Continuous parametrization partially over GI.

- Similar decision problem considers whether the distance is at most ϵ.
$\delta_{T}\left(G_{1}, G_{2}\right) \leq \epsilon$

RESEARCH SYMMETRIC TRAVERSAL DISTANCE

PROPERTIES

- The entirety of G2 must be traversed to satisfy the traversal distance definition, whereas GI does not require complete traversal.
- The traversal distance is asymmetric; specifically, the distance from GI to G2 may not be equal to the distance from G2 to GI.

DEFINITION

- For GI and G2, the symmetric traversal distance between the two geometric graphs is determined by the maximum epsilon value from both combinations of traversal distances such that:

$$
\delta_{S T}\left(G_{1}, G_{2}\right)=\max \left\{\delta_{T}\left(G_{1}, G_{2}\right), \delta_{T}\left(G_{2}, G_{1}\right)\right\}
$$

RESEARCH TRAVERSAL DISTANCE ALGORITHM

GRAPH DATA STRUCTURE

- nodes dictionary contains coordinate points nodes $=\left\{1:\left(x_{1}, y_{1}\right), 2:\left(x_{2}, y_{2}\right), \ldots n:\left(x_{n}, y_{n}\right)\right\}$ of vertices.
- nodeLinks dictionary contains adjacency lists nodeLinks $=\left\{1:\left\{j \in e_{1}\right\}, 2:\left\{j \in e_{2}\right\}, \ldots n:\left\{j \in e_{n}\right\}\right\}$ of edges.
j vertices neighboring vl .

FREE-SPACE DATA STRUCTURE

- cellBoundary contains the starting and ending cellBoundary $\left(e_{i}, v_{j}\right)=($ start, end $)$ where $0 \leq$ start $<$ end ≤ 1 points of free-space for the wall of a cell.
- Cell_Boundries dictionary contains

$$
\text { cell_boundaries } \left.=\{(e, v): \text { cellBoundary }(e, v)) \mid e \in E_{1}, E_{2} \quad v \in V_{1}, V_{2}\right\}
$$

RESEARCH TRAVERSAL DISTANCE ALGORITHM

PROCEDURE

- Step I: Compute the Cell Boundaries.
- DFSTraversalDist searches for and computes all free-space cellBoundary's using a Depth-First Search algorithm.
- Writes each cellBoundry to cell_boundaries.
- Step 2: Verify the Traversal of G2.
- projection_check determines if the projection of cell_boundaries onto $G 2$ covers the the graph entirety. projection_check $= \begin{cases}\text { True } & \delta_{T}\left(G_{1}, G_{2}\right) \leq \epsilon \\ \text { False } & \delta_{T}\left(G_{1}, G_{2}\right)>\epsilon\end{cases}$
- Step 3: Binary Search for Traversal Distance.
- binarySearch approximates the infimum of the traversal distance equation.
- Incorporates DFSTraversalDist and projection_check.

BINARY SEARCH ILLUSTRATION

RESEARCH TRAVERSAL DISTANCE ALGORITHM

TIME COMPLEXITIES

- All three algorithmics steps of the traversal distance run in polynomial time.
- binarySearch algorithm searches continuous epsilon by implementing discretization.
- Time complexity of the traversal distance is a product of DFSTraversalDistance, projection and binarySearch.

RESEARCH TRAVERSAL DISTANCE VISUALIZATION

Challenge: Visualizing traversal distance free-space in 2D free-space diagram is infeasible.

VISUALIZING FREE-SPACE AREA STEPS

- Step I: Apply quadrilateral colored area between the line segments of two edges; for all combinations of edges.
- Step 2: Compute the percentage of area within a free-space cell covered by free-space.
- Empty free-space cell: 0\%
- Full free-space cell: 100%
- Step 3: Apply percentage as a transparency to the quadrilateral-colored area.

Step I.

Step 2.

Step 3.

RESEARCH

TRAVERSAL DISTANCE VISUALIZATION

PLANT LEAF EXAMPLE

The percentage of transparency decreases for overlapping areas, transparency decreases for quadrilateralcolored areas as ϵ increases in the following example:

$$
\epsilon=0 .
$$

$$
\epsilon=150 .
$$

$$
\epsilon=250
$$

METADATA

- Distorted drawings of English letters with no curvature.
- Contains 2,250 labeled geometric graphs.
- Categorized into 15 distinct classes of 150 observations.
- A, E, F, H, I, K, L, M, N, T, V, W, X, Y and Z.

DATASET SAMPLES

- Observation " Y " is visibly recognizable.
- Observation " Z " is visibly unrecognizable.

TEST
 K-NEAREST NEIGHBORS ALGORITHM

DESCRIPTION

- Named KNeighborsClassifier.
- Python 3 script.
- k-Nearest Neighbors distance metrics are required to be symmetric.
- Developed custom k-Nearest Neighbors algorithm that implements the symmetric traversal distance.

EXAMPLE PREDICTION

MACHINE LEARNING PIPELINE

How the custom KNeighborsClassifier algorithm was tested on the English letter dataset:

Code Snippet:

TEST
 RESULTS

EVALUATION RESULTS

- Model runtime: ~ 7 hours.
- Achieved highest macro-average precision when $\mathrm{k}=7$.
- Macro-average precision: 85.9\%
- Macro-average Recall: 87.6\%

Macro-Average Precision and Recall as Value of k Increases.

Macro-average precision peaks when $\mathrm{k}=7$.

TEST REVISITING HYPOTHESIS

TRAVERSAL DISTANCE AND GRAPH EDIT DISTANCE COMPARISON

Algorithm	Score (\%)	Metric	Observations	Complexity
KNeighborsClassifier	89.5	Macro-Average Precision	2,250	Polynomial
Graph Edit Distance k- Nearest Neighbors	99.6	Undefined Precision*	6,750	NP-Hard

Is the KNeighborsClassifier algorithm computationally efficient? Yes Is the KNeighborsClassifier algorithm precise in classification? No**

CONTINUING WORK

DEADLINES

- Oral Defense Completion: April 19th
- Final Potential Research Meeting: May Ist
- Thesis Paper Submission: May $3^{\text {rd }}$

PENDING TOPIC REVISIONS

- Free-space description.
- Free-space diagram illustration.
- projection_check algorithm definition.
- KNeighborsClassifier comparison test.

QUESTIONS AND COMMENTS

